
Exploiting Contactless Side Channels in Wireless
Charging Power Banks for User Privacy Inference

via Few-shot Learning
Tao Ni∗, Jianfeng Li†, Xiaokuan Zhang‡, Chaoshun Zuo¶, Wubing Wang∥ ,

Weitao Xu∗, Xiapu Luo§, Qingchuan Zhao∗B
∗City University of Hong Kong, †Xi’an Jiaotong University, ‡George Mason University,

¶The Ohio State University, ∥DBAPPSecurity Co., Ltd, §The Hong Kong Polytechnic University
taoni2-c@my.cityu.edu.hk,jfli.xjtu@gmail.com,xiaokuan@gmu.edu,zuo.118@osu.edu

wubing.wang@dbappsecurity.com.cn,{weitaoxu,qizhao}@cityu.edu.hk,csxluo@comp.polyu.edu.hk

ABSTRACT

Recently, power banks for smartphones have begun to sup-
port wireless charging. Although these wireless charging
power banks appear to be immune to most reported vulner-
abilities in either power banks or wireless charging, we have
found a new contactless wireless charging side channel in
these power banks that leaks user privacy from their wireless
charging smartphones without compromising either power
banks or victim smartphones.We have proposed BankSnoop
to demonstrate the practicality of the newly discovered wire-
less charging side channel in power banks. Specifically, it
leverages the coil whine and magnetic field disturbance emit-
ted by a power bank when wirelessly charging a smartphone
and adopts the few-shot learning to recognize the app run-
ning on the smartphone and uncover keystrokes.We evaluate
the effectiveness of BankSnoop using commodity wireless
charging power banks and smartphones, and the results show
it achieves over 90% accuracy on average in recognizing app
launching and keystrokes. It also presents high adaptability
when apply to different smartphone models, power banks,
etc., achieving over 85% accuracy with 10-shot learning.
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1 INTRODUCTION

Today, power banks have almost become one of the must-
carry-on devices for numerous people to charge their smart-
phones outdoors if the battery is about to die. Accordingly,
we have witnessed the tremendous growth of power bank
rental stations in various public spaces, i.e., cafes and airports,
making their global market exceed a value of 7.1 billion dol-
lars worldwide (North America 54%, Asia Pacific 21%, Europe
10%, etc.) by the mid of 2022 [17]. Recently, many newly re-
leased power banks have begun to support wireless charging
because of its growing popularity, and these power banks
mostly follow the Qi [42] wireless charging standard that is
widely supported by different smartphone models running
different mobile operating systems (e.g., iOS and Android).
While previous studies [12, 21, 24, 45, 47] have reported

that either wireless charging or purely cable-based power
banks could be leveraged to infer user privacy from the charg-
ing smartphones, these studies have not raised sufficient pub-
lic awareness. This is because it seems plausible for wireless
charging power banks to survive those vulnerabilities in daily
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cases: (i) a wireless charging power bank does not require
a USB cable that often connects cable-based power banks
to smartphones for charging, where the cable can be used
to collect side-channel information, i.e., the charging cur-
rent [12, 45] to eavesdrop on user privacy. (ii) unlike wireless
chargers, wireless charging power banks are not connected
to the power outlet via the power cable when charging a
smartphone, and the power supply is dynamically adjusted
to the power bank’s battery level. Hence, reported attacks
that collect traces (e.g., current and voltage) in the power
cable and assume the power supply is stable [21, 24] cannot
apply to wireless charging power banks. (iii) similar to wire-
less chargers, heterogeneous wireless charging power banks
also rely on well-trained models [12, 21, 24, 47], which are
challenging to generalize across different power banks and
make the attack cost economically unacceptable in practice.
However, wireless charging power banks are not as ro-

bust to privacy leakage as they may appear. In this paper,
we report a new contactless wireless charging side channel
in power banks that can be exploited to infer user privacy
(e.g., app usage, keystrokes) from their charging smartphones
without compromising both the power bank and the smart-
phone in any way. This new side channel leverages two phys-
ical phenomena that are essentially rooted in the wireless
charging process, i.e., the emitted coil whine and the induced
ambient magnetic field disturbance. These two physical phe-
nomena are stemmed from the load changes [24] resulting
from smartphone activities (e.g., turning on the screen, re-
ceiving notifications), and these changes slightly vibrate the
internal coil of a wireless charging power bank. An adversary
could leverage the two physical phenomena to determine
the device type and battery status of the charging devices,
and infer users’ activities on the charging smartphone from
their unique and distinctive patterns.

We have designed and implementedBankSnoop to demon-
strate the feasibility of leveraging our reported novel attack
surface to launch a contactless, fine-grained, and domain-
adaptive attack on wireless charging power banks for the
first time. Table 1 summarizes a comparison with five state-
of-the-art related works [12, 21, 24, 45, 47] from five metrics,
which shows BankSnoop is more stealthy and practical: (i)
It requires no prior knowledge of the smartphone and power
bank, (ii) It has no need to compromise the power bank or
install malware into the victim’s smartphone, and (iii) it
achieves good transferability across various attack scenarios.
Specifically, BankSnoop detects the coil whine and mea-
sures the ambient magnetic field disturbance to recognize
the content changes displayed on a smartphone’s screen and
uncover sensitive information through four steps: First, it
detects the appearance of the coil whine as the indicator to
trigger the attack because the coil whine can only be gener-
ated when a wireless charging power bank is attached to the

Table 1: Comparison with related attacks from five metrics: (M1)

contactless or not; (M2) no need to compromise devices; (M3) no

prior knowledge of charging devices; (M4) fine-grained user privacy

inference; and (M5) adaptive to various conditions. ✓: true, ✗: false.

Attacks Attack surface M1 M2 M3 M4 M5

Cour et al. [21] Current in the power line ✗ ✗ ✗ ✗ ✗

Wu et al. [47] Inductive current ✓ ✓ ✗ ✗ ✗

EM-Surfing [24] Inductive voltage ✗ ✗ ✗ ✓ ✗

Charger-Surfing [12] Current in the USB cable ✗ ✗ ✗ ✓ ✗

GhostTalk [45] Current in the USB cable ✗ ✗ ✗ ✓ ✗

BankSnoop Coil whine and magnetic field ✓ ✓ ✓ ✓ ✓

smartphone and begins to charge its battery. Then, it depends
on the power spectrum of the coil whine to recognize the
type of power bank and smartphone and then leverages the
magnetic field traces to infer their battery levels to specify
the attacking conditions since battery levels determine the
power consumption that significantly affects the strength
and direction of ambient magnetic field disturbance. Next, it
utilizes the magnetic field disturbance to recognize different
user activities resulting from different displaying content
on the screen. Moreover, it also adopts few-shot learning
to quickly adapt pre-trained models to be deployed in new
attack scenarios and environments, considering a relatively
large number of practical factors in practice

We evaluate the effectiveness of BankSnoopwith a custom-
built portable attacking device, which comprises commercial-
off-the-shelf (COTS) electronic components, in uncovering
three user privacy information, i.e., app launching, in-app
activities, and input keystrokes (e.g., unlocking passcode, key-
board input) from different wireless charging power banks
and smartphones configuring with various impact factors
(different battery levels, users, screen brightness, etc.). Our
evaluation shows that BankSnoop achieves high effective-
ness in coil whine detection (99.0%), charging device finger-
printing (98.3%), battery level inference of both the power
bank and the smartphone (99.8%), app launching recognition
(93.1%), and keystroke uncovering from the unlocking nu-
meric keyboard (94.9%) and the full-size QWERTY keyboard
(86.9%) within ten attempts. In addition, BankSnoop also
presents high performance and resilience when considering
different practical impact factors by exploiting the few-shot
learning module with 5-shot and 10-shot adaptation. On av-
erage, it achieves over 80% and 85% accuracy in 5-shot and
10-shot learning when adapting to different scenarios.
Contributions.We summarize the contributions as follows:
• A novel side-channel attack.We introduce a new side
channel that can be exploited to attack wireless charging
power banks in a contactless manner. It leverages the emit-
ted coil whine and the induced magnetic field disturbance
to reveal sensitive information about the smartphone when
wirelessly charged by a power bank.
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Figure 1: Wireless charging using a power bank.

• A new attack framework.We propose and implement
a new attack framework, BankSnoop, to demonstrate the
feasibility of the new side channel and address limitations
in the previous wireless charging side-channel attacks.
• Extensive evaluation.We conduct an extensive evalua-
tion to demonstrate the effectiveness of BankSnoop. The
results indicate that it achieves high accuracy in uncov-
ering user privacy and shows great potential for domain
adaptation in various attack scenarios.

2 BACKGROUND

2.1 Wireless Charging Power Bank

Nowadays, almost all wireless charging power banks are de-
signed to support the Qi wireless charging standard [42]. As
shown in Figure 1, once a power bank is attached to a smart-
phone, it uses electromagnetic induction [46] to transfer
power from its coil (primary coil) to the coil in the smart-
phone (secondary coil). First, the power bank generates induc-
tive electromagnetic fields Φ𝑝 (𝑡) and Φ𝑠 (𝑡) in the primary
coil and the secondary coil based on the Biot-Savart law
(Equation 1). Then, according to Faraday’s law, the induc-
tive electromagnetic field Φ𝑠 (𝑡) generates an induced voltage
𝑈𝑠 (𝑡) to charge the smartphone as shown in Equation 2:

Φ𝑝 (𝑡 ) =
𝜇0𝑁𝑝 𝐼𝑝 (𝑡 )

2𝑅𝑝
,Φ𝑠 (𝑡 ) = 𝜂Φ𝑝 (𝑡 ) (1)

𝑈𝑠 (𝑡 ) = 𝑁𝑠
ΔΦ𝑠 (𝑡 )

Δ𝑡
= 𝜂

𝑁𝑠

𝑁𝑝
·
𝜇0Δ𝐼𝑝 (𝑡 )
2𝑅𝑠Δ𝑡

(2)

where 𝐼𝑝 (𝑡) is the running current in the primary coil, 𝑁𝑝
and 𝑅𝑝 are the turns and radius of the primary coil, 𝑁𝑠 and 𝑅𝑠
are the turns and radius of the secondary coil, 𝜂 is the energy
transmission coefficient, and 𝜇0 is the magnetic constant.
In the power transfer phase, the control circuit in the

power bank continuously communicates with the control
unit in the smartphone via Qi message and adjusts the cur-
rent in the primary coil. That is, when the user is using mo-
bile apps on the charging smartphone, the smartphone will
increase the charging speed as the running app consumes
more power [42, 47]. Hence, the smartphone will send a Qi
message to the power bank to request more power supply,
which changes the current running in the primary coil.

2.2 Two Physical Phenomena

In the charging process, the wireless charging power bank
controls the running current in the coil 𝐼𝑝 (𝑡) based on the

level of its battery 𝐵(𝑡) (Equation 3) because it contains
limited electricity storage and a continuous large discharging
current will inevitably shorten the battery life.

𝐼𝑝 (𝑡 ) (A) =


𝐼𝑝1 𝐵0 < 𝐵 (𝑡 ) ≤ 𝐵1 (mAh)
𝐼𝑝2 𝐵1 < 𝐵 (𝑡 ) ≤ 𝐵2 (mAh)
𝐼𝑝3 𝐵2 < 𝐵 (𝑡 ) ≤ 𝐵3 (mAh)
· · · · · ·

(3)

In particular, the adjusting mechanism of the charging
voltage 𝑈𝑠 (𝑡) ∝ Δ𝐼𝑝 (𝑡) in the Qi wireless charging proto-
col [42, 47] and the consequent dynamically changed cur-
rent ultimately result in slight vibrations of the coils, which
incites two physical phenomena, i.e., the coil whine and the
disturbance of the ambient electromagnetic field.
Coil whine. Coil whine, a.k.a., electromagnetically induced
acoustic noise, is a microphonics phenomenon produced by
the coils’ vibration under the excitation of electromagnetic
forces (e.g., Maxwell stress tensor, magnetostriction, and
Lorentz force) [6] based on the Ampere’s force Law as:

𝐹𝑝 (𝑡 ) = 𝑁𝑝Φ𝑝 (𝑡 )𝐼𝑝 (𝑡 )𝐿𝑝 ∝ 𝐵2 (𝑡 ) (4)

where 𝐿𝑝 is the circumference of the primary coil. These
forces cause distortion and vibration of the coil, resulting
in different coil whines. Specifically, coil whine exists in
different frequency ranges, which makes it either human
audible (frequency between 20Hz and 20kHz) or inaudible,
while it can be captured by sound-recording microphone
modules with sufficient sampling frequency [50].
Magnetic field disturbance. Different smartphone-user
interactions cause changes in induced current during the
charging process [21], which results in the disturbance of the
ambient electromagnetic field. Specifically, power-intensive
smartphone activities (e.g., screen animation, pressing key-
board) changes the load by Δ𝑟 (𝑡) on the secondary coil,
which further results in the disturbance of the electromag-
netic field ΔΦ(𝑡) as shown in Equation 5:

Δ𝐼 (𝑡 ) = 𝑈𝑠 (𝑡 )
Δ𝑟 (𝑡 ) ,ΔΦ(𝑡 ) =

𝜇0𝑁𝑠Δ𝐼 (𝑡 )
2𝑅𝑠

=
𝜇0𝑁𝑠𝑈𝑠 (𝑡 )
2𝑅𝑠Δ𝑟 (𝑡 )

∝ Δ𝐵 (𝑡 )
Δ𝑟 (𝑡 ) (5)

As such, these changes can be measured by monitoring the
electromagnetic field over a period of time. In practice, the
electromagnetic field at a specific time point can be described
as a 3-D (𝑥 ,𝑦, 𝑧) vector that can be captured bymagnetometer
modules, which can be utilized for inferring various user
activities on smartphones [10, 34, 36].

3 MOTIVATION AND THREAT MODEL

3.1 A Motivating Example

This section presents a motivating example of launching our
newly discovered side-channel attack in a real-life scenario.
After attaching a wireless charging power bank to a smart-
phone, a user unlocks the screen with the password (e.g.,
“1234”), taps the app icon to open the PayPal, and enters
the password “abcde” to access financial functions (e.g., pay,
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Figure 2: Motivating example scenario: a user charges the smart-

phone with a wireless charging power bank, unlocks the screen with

password “1234”, touches the app icon to open PayPal, and types

password “abcde” to enter the financial account. Upper part: the

power spectrum of the coil whine when the wireless charging pro-

cess starts. Lower part: user activities and corresponding changes of

the magnetic field.

transfer). These actions change the content displayed on the
screen from one to another accordingly. As mentioned in
§2.2, changes on the screen could impact the current in both
the primary coil in the wireless charging power bank and
the secondary coil in the smartphone, which further influ-
ences the ambient electromagnetic field, and these changes
present detectable features that can be used for recognizing
corresponding smartphone activities to infer user privacy.

In Figure 2, we present the changes in coil whine and the
ambient magnetic field associated with displaying content
changes resulting from different user interactions. Specifi-
cally, we show the power spectrum of the coil whine within
the range from 13kHz to 15kHz and the three-axis magnetic
field disturbance of unlocking keystrokes, app launching, and
QWERTY keystrokes. As can be seen, the coil whine is de-
tected right after attaching the wireless charging power bank
to a smartphone. On the other hand, the magnetic field shows
apparent disturbances when launching an app (i.e., PayPal).
Moreover, the magnetic field disturbance can also reflect
and distinguish different keystrokes on the unlock numeric
keyboard (e.g., “1”) and the full-size QWERTY keyboard (e.g.,
“a”). Therefore, the mentioned two physical phenomena, coil
whine and the magnetic field disturbance, can be exploited
to develop a new contactless wireless charging side-channel
attack to reveal the displaying content changes on the screen

and uncover sensitive information (e.g., running apps, in-app
activities, keystrokes).

3.2 Threat Model

We consider a common scenario of using wireless charging
power banks to charge smartphones where a victim attaches
the wireless charging power bank (e.g., his/her own or bor-
rowed from shareable rental stations) to the smartphone.
Then, the victim places the devices on a table and performs a
series of interactions (e.g., typing the keyboard on the screen,
running apps). Such a scenario is prevalent in daily life in
various public spaces like airports or cafes. The attackers can
place an attacking device to record the leakage of physical
traces in close proximity to the target power bank.
What an attacker cannot do. Unlike many relevant at-
tacks [12, 21, 24, 45, 47], the attacker does not necessarily
have prior knowledge of the charging smartphone and the
power bank (e.g., model type, battery status). We do not
assume the attacker can compromise the power bank or
install malware into the victim’s smartphone to acquire cur-
rent/voltage traces either. Also, the attacker has no LoS view
of the two devices and does not know the specific time that
the wireless charging power bank begins to charge the smart-
phone. Moreover, it is unlikely for an attacker to collect large
amounts of data samples from different conditions to train
multiple privacy inference models before the attack.
What an attacker can do. The attacker can place a small
attacking device to record coil whine and measure the ambi-
ent magnetic field disturbance in close physical proximity to
the target power bank (underneath the table or side-by-side,
e.g., 4in or 10cm, within a certain distance). The attacking
device could be small to be hidden in a common electronic
peripheral (e.g., an earbud case) that can be attached beneath
a table or put near the power bank without being notified.

4 ATTACK DESIGN

Figure 3 presents the overview of BankSnoop. An attacker
first acquires coil whine and magnetic field signals to deter-
mine the charging status and trigger the attack to recognize
the types and battery levels of both the smartphone and
the power bank. Then, the triggered attacking device uti-
lizes magnetic signals for fine-grained activity recognition
using pre-trained deep neural network models. Moreover,
BankSnoop also incorporates a few-shot learning module
for quickly adapting to various attack scenarios (e.g., differ-
ent smartphone models, power banks). Finally, the attacker
can infer fine-grained user activities and privacy such as un-
locking passcode, sensitive keystrokes, and in-app activities.

4.1 Attack Triggering Recognition

To launch this side-channel attack, we need to recognize the
triggering condition where a power bank wirelessly charges
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Figure 3: Overview of BankSnoop.

a smartphone. As mentioned above (§2), it will generate two
physical phenomena, the coil whine and the magnetic field
disturbance at such a condition. Specifically, the coil whine
appears when the wireless charging starts and performs as
an indicator to trigger the attack. Furthermore, the mag-
netic field disturbance can be used to infer the status of the
charging devices. As such, we use them together to detect
the charging status by monitoring the coil whine and infer
the battery levels of both the power bank and the charging
smartphone by measuring the magnetic field.
Coil whine detection.We find the acoustic phenomenon,
coil whine, which exists during the wireless charging pro-
cess. Therefore, we can use the coil whine effect as the attack
trigger of BankSnoop. In practice, the microphone module
on the attack prototype first detects the coil whine, and a
high-pass filter is applied to remove noises caused by low-
frequency sounds (e.g., human speaking, touchscreen tap-
ping). Next, we obtain the power spectrum of the filtered
audio by utilizing Short-time Fourier Transform (STFT) using
a periodic Hann window. Then, we extract acoustic features
Mel-frequency cepstral coefficients (MFCCs) [41] from the
power spectrum and a pre-trained Decision Tree [38] classi-
fier determines the charging status at present (non-charging
or in-charging). In practice, we leverage MATLAB Audio
Toolbox (version 3.0) to extract MFCC features to train the
Decision Tree classifier with 10-fold cross-validation.
Device fingerprinting. Aforementioned wireless charging
side-channel attacks [21, 24, 47] usually assume the attacker
knows the type of the victim’s device, whereas it is impracti-
cal and increases the difficulties of launching such an attack
in a real-life scenario. Based on Equation 4, we know the
electromagnetic forces that cause coil whine, are related
to the turns and circumference of the coils. Therefore, it is
reasonable to exploit the coil whine to fingerprint different
power banks and smartphones since their coils have varied
characteristics. Following the same procedure, another pre-
trained Decision Tree classifier is implemented to determine
the device type of both the power bank and the smartphone.
Battery level inference. Unlike wireless chargers with ca-
bles that provide a stable charging voltage, wireless charging
power banks contain limited electrical energy in the battery.
As mentioned in §2.2, the power bank adjusts the charg-
ing voltage based on its battery status to prevent excessive
discharge. Therefore, two battery levels are involved in the
wireless charging process supported by the power bank, i.e.,

the battery level of the smartphone and the battery level
of the power bank. As such, BankSnoop depends on the
inference of the two battery levels for two reasons. First,
it recognizes the power bank’s battery level to understand
whether it has power left or not (yes or no) to be sufficient
to launch the attack. Second, the smartphone’s battery level
is an essential factor impacting model performance in previ-
ous studies of wireless charging side channels such as [21],
whose models can only work when the smartphone’s bat-
tery exceeds 80%. Hence, to enhance BankSnoop with the
practicality to launch attacks at any battery levels, we lever-
age the magnetic field disturbance to infer the exact battery
level of the smartphone and the power bank to facilitate
procedures in the following steps. Specifically, we leverage
the magnetometer to collect three-axis magnetic signals and
measure the strength of captured 3D magnetic field𝑀𝑎𝑔𝑠 (𝑡)
at a specific time point 𝑡 as shown in Equation 6:

𝑀𝑎𝑔𝑠 (𝑡 ) =
√︃
𝑀𝑎𝑔2𝑥 (𝑡 ) +𝑀𝑎𝑔2𝑦 (𝑡 ) +𝑀𝑎𝑔2𝑧 (𝑡 ), (6)

where 𝑀𝑎𝑔𝑥 , 𝑀𝑎𝑔𝑦 , 𝑀𝑎𝑔𝑧 represent the magnetic field on
𝑥 , 𝑦, 𝑧 axis, respectively. We obtain the strength differences
by deducting the magnetic field when no charging device
is presented and then calculate the difference’s cumulative
distribution function (CDF). Next, we use the CDF values to
train a Decision Tree classifier to infer the battery level of
the power bank and the charging smartphone.

To demonstrate the feasibility of battery level inference in
the charging process, we conduct a preliminary investigation
to answer three research questions as follows:
• RQ1: Do different power banks present different battery
levels in a wireless charging process?
• RQ2: Does the initial battery percentage of the smart-
phone impacts the inductive charging current?
• RQ3: Can CDFs of magnetic field strength differences
distinguish the battery levels of a power bank?
To answer research questions RQ1 and RQ2, we use a com-

modity app, i.e., Amperes 4 [26], to record statistics during
the charging status of iPhone 13 Pro starting from 10% charg-
ing with four wireless charging power banks: EGO MAG-
POWER 2 [27], Anker MagGo [2], Apple MagSafe Battery
Pack [4], and Belkin BOOSTCHARGE [7].We present the cur-
rent curves of these power banks in Figure 4a and notice that
Apple MagSafe Battery Pack and Belkin BOOSTCHARGE
show stable current during the charging process, whereas
EGO MAGPOWER 2 and Anker MagGo present ladder-like
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current changes. Additionally, we find the current levels of
these two wireless charging power banks correspond to the
battery levels that are normally displayed as the number of
LED lights on the power banks.

Answer to RQ1: Different power banks present different
charging patterns, and some (e.g., EGO MAGPOWER 2,
Anker MagGo) present ladder-like battery levels.

Furthermore, we measure the inductive charging current
in the secondary coil when charging an iPhone 13 Pro with
EGO MAGPOWER 2 at different initial battery percentages.
Figure 4b shows that the inductive currents present similar
ladder-like patterns regardless of the initial battery percent-
age of the smartphone. Although the initial battery percent-
age of the smartphone has no impact on the inductive charg-
ing current, it still influences the current patterns incurred by
smartphone activities, as a prior work [21] has demonstrated.
Therefore, in BankSnoop, we design the battery level infer-
ence module by recognizing the power bank’s battery level
and the percentage of the smartphone’s battery.

Answer to RQ2: The inductive charging current in the sec-
ondary coil depends on the battery level of the power bank
regardless of the smartphone’s initial battery percentage.

To answer RQ3, we measure the battery levels of two
wireless charging power banks (i.e., EGO MAGPOWER 2
and Anker MagGo) that demonstrate ladder-like charging
current curves by obtaining the cumulative distribution of
the strength differences. Figure 5a and Figure 5b separately
present the cumulative distribution plots of EGOMAGPOWER
2 and Anker MagGo, they all show that strength difference
patterns are distinctive at different battery levels. Therefore,
our proposed CDF-based method is feasible to distinguish
the different battery levels of a power bank.

Answer to RQ3: We can use CDFs of the magnetic field
strength differences as the measurement to distribute differ-
ent battery levels of a wireless charging power bank.

4.2 Magnetic-based Activity Recognition

Having recognized the attack triggering condition and de-
termined the devices’ type as well as the battery levels,
BankSnoop next exploits the captured 3D magnetic field
signals with pre-trained deep learning models to recognize
various user activities on the charging smartphone.
Pre-processing. After obtaining the raw magnetic field sig-
nals, we first apply a Savitzky–Golay (S-G) filter to remove
noises in the collected sequential magnetic field signals with-
out distorting the signal shapes [8, 32, 33]. Then, we calculate
the average values of the first one-second data as the static
magnetic field values on three axes, deduce this offset value

(a) Different power banks. (b) Different battery percentages.

Figure 4: Charging curvesmeasured from iPhone 13 Pro. (a) Charging

with different power banks. (b) Charging at different smartphone

battery percentages.

(a) EGO MAGPOWER 2. (b) Anker MagGo.

Figure 5: CDFs of magnetic field strength differences at battery levels

25%, 50%, 75%, and 100% of two power banks.

as the starting coordinate, and further obtain the disturbance
resulting from different user-smartphone interactions.

Since each activity has a different length of time in every
attempt (e.g., an app launching takes 1-5 seconds [36], a
single key-press takes 0.05-0.2 seconds [48]), BankSnoop
normalizes the processed signals of each activity attempt
to the same length of time (e.g., 0.1 seconds) by utilizing
up-sampling (e.g., interpolation [35]) or down-sampling (e.g.,
decimation factor [20]) algorithms.
Activity recognition. As the processed magnetic signals
are three-axis one-dimensional time series, we adopt a one-
dimensional convolutional neural network (CNN) to build a
classifier for activity inference (e.g., app fingerprinting, in-
app activity recognition, and single key-press recognition).
Specifically, CNN-based deep learning models are utilized
in previous side-channel attacks using one-dimensional sig-
nals [21, 34] because they can capture temporal (e.g., move-
ments) and spatial (e.g., position) features that reflect user-
smartphone interactions from time series and achieve a high
classification accuracy [12, 18]. In the CNN-based network,
we utilize two convolutional layers to extract temporal and
spatial features from the input time series and two batch-
normalization layers to standardize the data and stabilize the
learning process. Then, two max-pooling layers can reduce
the dimension by half, and a dropout layer has been added to
prevent overfitting. Finally, the flatten layer converts feature
maps to one-dimensional, and the last fully-connected layers
output the predicted class with the highest probability.
Implementations. We implement the CNN-based neural
networks in Keras 2.3 on the Tensorflow 2.0 framework.
We apply the ReLU activation function for two convolution
layers and set the pool size as two for each max-pooling
layer. In the training stage, we set the batch size as 32 and
use the cross-entropy loss and Adam optimizer with an initial
learning rate of 0.01 and epoch of 100. The output shape of



Contactless Side Channels in Wireless Charging Power Banks ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

the last fully-connected layer depends on the corresponding
task (e.g., the number of apps and keys on the keyboard).

In the case of keystroke inference, as users often type pass-
words or sensitive keystrokes in sequences of various lengths,
we define each interval between two adjacent key presses as
a new key class and add it to the training process of the men-
tioned two soft keyboards. Furthermore, the softmax func-
tion produces an array that contains the probability of each
class and outputs the predicted label with the highest prob-
ability value (a.k.a., argmax). Hence, we use the output of
the softmax function and generate predicted sequences with
top 𝑘 (e.g., 𝑘 = 5, 10, . . . ) highest probabilities, which are also
denoted as top-𝑘 prediction candidates. We utilize the top-𝑘
candidates to evaluate the keystroke inference performance
of BankSnoop as it is reasonable that an attacker can surmise
the correct passwords or keystrokes in a few attempts [19].
4.3 Adaptation via Few-shot Learning

Although the CNN-based magnetic signal classifier achieves
promising accuracy, its performance can be impacted by
shifting conditions. Therefore, previous side-channel attacks
try to restrict prerequisites (e.g., smartphone battery percent-
age over 80% [21]) or train multiple deep learning models
for different configurations (e.g., smartphone models [12]).
However, these methods not only require large-scale datasets
to ensure good performance but also limit attack scenarios.
Therefore, considering various attack scenarios in practice,
we design a few-shot learning module in BankSnoop based
on the concept ofmodel-agnosticmeta-learning (MAML) [15].
Below, we illustrate our proposed algorithm in two stages:
meta-training and adaptation.
Meta-training. We present the meta-training algorithm for
the magnetic signal classifier in Algorithm 1. In the meta-
training step, we denote the magnetic signal classifier as
𝑓 and network parameters as 𝜃 . A set of tasks 𝒯 are gen-
erated from the source dataset 𝒟𝑆 that contains magnetic
signal samples collected from various conditions (e.g., differ-
ent wireless power banks). For each task 𝒯𝑖 ∈ 𝒯 , the classifier
learns to recognize N classes by using a small number of K
(e.g., five or ten) labeled samples of each class, which is also
known as K-shot N -way classification task. Furthermore,
each task 𝒯𝑖 involves a support set 𝒮𝒯𝑖

and a query set 𝒮𝒬𝑖
,

where 𝒮𝒯𝑖
disjoints with 𝒮𝒬𝑖

(𝒮𝒯𝑖
∩ 𝒮𝒬𝑖

= 𝜙) and each set
contains 𝐾 × 𝑁 samples. The classifier 𝑓 is initialized with
random parameters 𝜃0 and then being trained by the associ-
ated support set𝒮𝒯𝑖

of each task 𝒯𝑖 . Then, the classifier learns
a new task-specific parameters 𝜃 ′𝒯𝑖

which are tuned from the
initial parameters 𝜃0 via updating the gradient descent:

𝜃
′
𝒯𝑖 = 𝜃0 − 𝛼∇𝜃ℒ𝒯𝑖 (𝑓𝜃0 ,𝒮𝒯𝑖 ), (7)

where 𝛼 is a preset learning rate of individual tasks and
ℒ𝒯𝑖
(𝑓𝜃0 ,𝒮𝒯𝑖

) is the task-specific cross-entropy loss of 𝑓 on
the support set 𝒮𝒯𝑖

which is given as follows:

Algorithm 1: Meta-training for magnetic classifier
Input: 𝒟𝒮 : source dataset. 𝑓 : magnetic signal classifier. 𝛼

and 𝛽 : learning rate hyperparameters.
Output: 𝑓𝜃 ∗ : trained magnetic signal classifier with

optimized parameters 𝜃∗.
1 𝜃 ← 𝜃0, 𝑓𝜃 ← 𝑓𝜃0 ⊲ random initialize 𝑓𝜃 with parameters 𝜃0
2 while not finished do

3 𝒯 ← generate a batch of tasks from 𝒟𝒮
4 for each task 𝒯𝑖 ∈ 𝒯 do

5 𝒮𝒯𝑖
← 𝐾 × 𝑁 support samples from 𝒯𝑖

6 𝒮𝒬𝑖
← 𝐾 × 𝑁 query samples from 𝒯𝑖

(𝒮𝒯𝑖
∩ 𝒮𝒬𝑖

= 𝜙)
7 Evaluate ∇𝜃ℒ𝒯𝑖

(𝑓𝜃 ) with 𝒮𝒯𝑖
and loss ℒ𝒯𝑖

(𝑓𝜃 ,𝒮𝒯𝑖
)

8 𝜃
′
𝒯𝑖
← 𝜃0 − 𝛼∇𝜃ℒ𝒯𝑖

(𝑓𝜃0 ,𝒮𝒯𝑖
) ⊲ obtain task-specific

parameters 𝜃 ′𝒯𝑖
of 𝒯𝑖 using gradient descent.

9 Evaluate ℒ𝒯𝑖
(𝑓
𝜃
′
𝒯𝑖
) with query set 𝒮𝒬𝑖

.

10 𝜃∗ ← 𝜃0 − 𝛽∇𝜃
∑

𝒯𝑖 ∈𝒯 ℒ𝒯𝑖
(𝑓
𝜃
′
𝒯𝑖
,𝒮𝒬𝑖

) ⊲ obtain the
optimized parameters 𝜃∗ that minimizes all task losses

11 Output classifier 𝑓𝜃 ∗ with optimized parameters 𝜃∗

ℒ𝒯𝑖 (𝑓𝜃0 ,𝒮𝒯𝑖 ) =
∑︁

(x 𝑗 ,y 𝑗 ) ∈𝒮𝒯𝑖

y 𝑗 log𝑓𝜃 (x 𝑗 ) + (1 − y 𝑗 ) log𝑓𝜃 (1 − x 𝑗 ), (8)

where (x 𝑗 , y 𝑗 ) is the 𝑗 th sample in 𝒮𝒯𝑖
. With the task-specific

parameters 𝜃 ′𝒯𝑖
of all tasks 𝒯𝑖 in 𝒯 , we can define a meta-

objective function presented as follows:

argmin
𝜃

∑︁
𝒯𝑖 ∈𝒯

ℒ𝒯𝑖 (𝑓𝜃 ′𝒯𝑖
,𝒮𝒬𝑖

) . (9)

The objection function is proposed to find parameters 𝜃 ∗
that can minimize the sum of task losses in 𝒯 . We obtain
the testing loss of task 𝒯𝑖 by evaluating the performance of
the task-specific classifier on the query set 𝒮𝒬𝑖

. Finally, we
obtain 𝜃 ∗ by applying stochastic gradient descent (SGD) [15]:

𝜃∗ ← 𝜃0 − 𝛽∇𝜃
∑︁

𝒯𝑖 ∈𝒯
ℒ𝒯𝑖 (𝑓𝜃 ′𝒯𝑖

,𝒮𝒬𝑖
), (10)

where 𝛽 is another preset learning rate for SGD optimization.
The final outputs of meta-training step is the classifier 𝑓𝜃 ∗
with the optimized parameters 𝜃 ∗.
Adaptation. After obtaining the optimized initialization
parameters 𝜃 ∗, the magnetic signal classifier can realize fast
adaptation to various attack scenarios (e.g., different wireless
charging power banks, battery levels, etc.) with only 𝐾 × 𝑁
labeled training samples collected from the new scenario to
fine-tune the pre-trained model. For example, when a new
target dataset𝒟𝑛𝑒𝑤 that is collected from a different wireless
power bank (𝒟𝑛𝑒𝑤 ∩ 𝒟𝒮 = 𝜙), the optimized classifier 𝑓𝜃 ∗
can quickly adapt to this new task 𝒯𝑛𝑒𝑤 and obtain the new
parameters 𝜃𝑛𝑒𝑤 in a few gradient descent updates as follows:

𝜃𝑛𝑒𝑤 = 𝜃 ∗ − 𝛼∇𝜃ℒ𝒟𝑛𝑒𝑤 (𝑓𝜃∗ ), (11)
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Figure 6: Custom-built attacking device (almost the same size as

Apple AirPods 2) and attack scenarios.

where the 𝛼 is same to the hyperparameter denoted in Equa-
tion 7. After the adaptation stage, we obtain the magnetic sig-
nal classifier 𝑓𝜃𝑛𝑒𝑤 with fine-tuned parameters 𝜃𝑛𝑒𝑤 towards
the new task 𝒯𝑛𝑒𝑤 . In practice, we adopt 5-shot and 10-shot
with 𝑁 = 120 for app fingerprinting, 𝑁 = 11 and 𝑁 = 33 for
the unlocking and the QWERTY key-pressing recognition,
respectively. We set the hyperparameter learning rate 𝛼 and
𝛽 as 0.01 and 0.001, respectively. Then, we apply ten gradient
descent updates for generating the magnetic signal classifier
with cross-task optimized parameters 𝜃 ∗ and ten gradient
steps to fine-tune the 𝜃 ∗ to obtain parameters 𝜃𝑛𝑒𝑤 for target
datasets in new scenarios.
4.4 Portable Attacking Device

As mentioned above, we have implemented a portable attack-
ing device, which consists of four commercial-off-the-shelf
(COTS) components: an Arduino Nano microcontroller unit
(MCU) [31], a microphone module to capture coil whine, a
three-axis magnetometer module to capture magnetic sig-
nals, and a micro SD card shield to record collected data.
Specifically, we use Adafruit MAX9814 microphone ampli-
fier [1] and HMC5883L magnetometer module [14]. The to-
tal size of the attack prototype is approximately 1.8 × 1.3in
(4.6 × 3.3cm), which is close to the size of an Apple AirPods
case. The total cost is approximately 32.5 dollars.

5 EVALUATION

5.1 Experiment Setup

In the primary settings of the experiment1, we use a full-
battery (100%) EGO MAGPOWER2 power bank to charge an
iPhone 13 Pro at 80% battery percentage. Then we place the
in-charging smartphone on an oak table with a thickness
of 0.94in (2.4cm), and stick the attack prototype underneath
the table. In addition, the preset sampling frequencies of
the microphone and magnetometer are 40kHz and 100Hz,
respectively. Moreover, all data processing is conducted on
a desktop running Windows 10 with 32GB memory, Intel i7-
9700K CPU, and an NVIDIA GeForce RTX 2080Ti GPU. Note
that our experiments are conducted in an uncontrolled en-
vironment, and low-frequency noises (e.g., human speaking:
1
Ethical consideration: This work takes ethical considerations seriously,
and it has been approved by our IRB to collect data from human participants.
More experimental details (e.g., full list of testing sequences) are available
at https://github.com/taoni0718/BankSnoop

50–300Hz; button pressing: 1–10Hz) have little impact since
the coil whine has a high-frequency range (e.g., 13–15kHz).
5.2 Datasets

We build six different datasets on commodity devices in dif-
ferent conditions to demonstrate its effectiveness in §5.3
from four commodity wireless charging power banks (𝑃1–𝑃4:
EGO MAGPOWER 2, Anker MagGo, Apple MagSafe Battery
Pack, and Belkin BOOSTCHARGE) and four smartphones
(𝑆1–𝑆4: iPhone 13 Pro, iPhone 12, iPhone 11, and Samsung
S10) to train different models in BankSnoop and evaluate
their performance in detecting coil whine and devices’ type,
inferring the battery levels, recognizing app/in-app activi-
ties, uncovering keystrokes, and adapting to different attack
scenarios with the few-shot learning module.
• 𝒟𝐶𝑊 : the coil whine dataset contains one-second audio
clips in two cases: the smartphone is in-charging and non-
charging. In the in-charging condition, we collect samples
in both screen-off and screen-on status. This procedure is
repeated 50 times and then a 0.1 seconds sliding window is
applied to perform STFT (2 × 50 × 10 × 4 traces).
• 𝒟𝐷𝐹 : the device fingerprinting dataset follows the same
data collection procedure from four smartphones that are
being charged by four power banks (4 × 4 × 50 × 10 traces).
• 𝒟𝐵𝐿 : the battery level dataset is collected from twowireless
charging power banks (more details in §5.3) that present
different battery levels (25%, 50%, 75%, and 100%) when
charging the four smartphones at four battery percentages
(20%, 40%, 60%, and 80%), each charging combination 500
samples (4 × 4 × 500 × 8 traces).
• 𝒟𝐴𝑝𝑝 : the mobile app dataset is collected from a total of
120 apps from the official iOS and Android store, which
contains the top 5 popular free apps from 24 app categories
based on the statistics provided by appfigures [3] by the end
of 2021. We collect the first 0.1 seconds of launching each
app and repeat it 100 times (120× 100× 8 traces). Moreover,
we select the most popular five apps (e.g., YouTube, PayPal)
and collect data when performing five application-specific
activities for 100 times to train the classifier for in-app
activity recognition (5 × 5 × 100 traces).
• 𝒟𝑈𝐾 and 𝒟𝑄𝑊𝐸𝑅𝑇𝑌 : the two keystroke datasets are col-
lected from two common soft keyboards: unlocking key-
board (𝒟𝑈𝐾 ) and full-size QWERTY keyboard (𝒟𝑄𝑊𝐸𝑅𝑇𝑌 ).
Each key (including backspace, space, etc.), as well as the in-
terval key for segmentation, is pressed 100 times (11×100×8
traces in 𝒟𝑈𝐾 and 33 × 100 × 8 traces in 𝒟𝑄𝑊𝐸𝑅𝑇𝑌 ).

5.3 Effectiveness

We use accuracy and confusion matrix as the metrics to eval-
uate BankSnoop in coil whine detection, device fingerprint-
ing, battery level inference, app launching/in-app activity
recognition, and keystroke uncovering.

https://github.com/taoni0718/BankSnoop
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Effectiveness of coil whine detection. Based on𝒟𝐶𝑊 , we
train a Decision Tree classifier to determine the presence of a
power bank wireless charging a smartphone. On the testing
set (200 samples for each wireless power bank), the Decision
Tree classifier achieves an overall accuracy of 99% (EGO
MAGPOWER 2: 99.5%, Anker MagGo: 98.5%, Apple MagSafe
Battery Pack: 99%, and Belkin BOOSTCHARGE: 100%).
Effectiveness of device fingerprinting. Similarly, we use
the captured coil whine in the dataset𝒟𝐷𝐹 to train a Decision
Tree classifier to recognize the type of smartphone and the
power bank. Figure 7 presents the confusion matrix of the de-
vice fingerprinting results of the 16 evaluated combinations
(e.g., 𝑆1 × 𝑃1: iPhone 13 Pro charged by EGO MAGPOWER 2,
𝑆2 × 𝑃3: iPhone 12 charged by Apple MagSafe Battery Pack).
The results show that BankSnoop achieves an accuracy of
98.3% in recognizing the type of charging devices.
Effectiveness of battery level inference. Based on the
results of the preliminary study (§4.1), we, therefore, uti-
lize the MATLAB Statistics Toolbox to generate the CDFs
of magnetic field strength differences from 𝒟𝐵𝐿 to develop
a Decision Tree classifier to recognize the combination of
both the battery level/percentage of the power bank and the
in-charging smartphone. Figure 8 presents the confusion ma-
trix of battery level inference results of using the EGO MAG-
POWER 2 to charge the iPhone 13 Pro at 16 different battery
level combinations (e.g., 𝑆20 × 𝑃100: smartphone battery at
20%, power bank battery at 100%). It shows that BankSnoop
achieves 99.8% accuracy in battery level inference.
Effectiveness of app launching recognition. Figure 9
presents the effectiveness of BankSnoop in recognizing 120
mobile apps at the app launching stages. We utilize 80%
data of each app from 𝒟𝐴𝑝𝑝 to train the recognition model
and evaluate its performance with the remaining 20% data.
Overall, the recognition model achieves 93.1 ± 2.9% accu-
racy on the testing set of traces from 120 apps. Specifically,
BankSnoop performs the best in identifying apps in cate-
gories such as “Books” and “Education” (accuracy 100.0%),
and it performs worst in the category “Social Network” (accu-
racy 89.8± 2.2%). We found that the launching stage of most
apps in the category “Social Network” involves fewer ani-
mations, which makes them more difficult to be recognized
compared with apps that perform launching animations from
other categories (e.g., B&N NOOK, Duolingo).
Effectiveness of in-app activity recognition. In𝒟𝐴𝑝𝑝 , we
also collectmagnetic traceswhen performing five application-
specific activities in five popular apps (YouTube, PayPal,
WhatsApp, Facebook, and Spotify) and implement the CNN-
based classification model for in-app activity recognition.
For example, in YouTube, we evaluate BankSnoop in rec-
ognizing activities including play video, forward, backward,
pause video, and next video. Figure 10a–Figure 10e present

the confusion matrices of the in-app activity recognition
results, where we find BankSnoop achieves an accuracy of
85.2%, 84.0%, 86.2%, 82.2%, and 81.4% in recognizing the five
application-specific activities of the evaluated five mobile
apps, respectively. Therefore, we demonstrate the effective-
ness of BankSnoop, which accurately recognizes not only
the launching app but also the fine-grained in-app activities.
Effectiveness of keystroke uncovering. The evaluation
of BankSnoop’s performance on keystroke uncovering is
conducted on two datasets,i.e., 𝒟𝑈𝐾 and 𝒟𝑄𝑊𝐸𝑅𝑇𝑌 , that are
collected from the unlocking keyboard and the QWERTY
keyboard. We randomly generate three sequences of num-
bers and characteristics for each keyboard with lengths rang-
ing from one to ten1. Each randomly generated sequence is
repeated for 100 times (e.g., three examples of testing cases in
length one of the QWERTY keyboard are “c”, “o”, and “e”). Fig-
ure 11 shows the evaluation results on the random sequence
testing set. We generate the top-10 candidates of the pre-
dicted sequence and obtain the corresponding accuracy if one
of the top-10 candidates is correct. The overall accuracy of
uncovering sequences in the length of one and ten are 94.9%,
and 86.9%, respectively. The top-10 accuracy decreases as
the sequence length increases, whereas the keystroke uncov-
ering accuracy is still comparable to other works [19, 22, 48].

5.4 Few-shot Learning Evaluation

Baselines. We compare our proposed few-shot learning
module with three baselines: (i) Source-only (SO): we use the
model trained from only the source dataset 𝒟𝒮 and evaluate
its performance on the target dataset 𝒟𝒯 directly with no
adaptation, (ii) Target-only (TO): we use the few samples (e.g.,
five or ten) from 𝒟𝒯 to train the CNN-based neural network
and evaluate it with the rest samples of𝒟𝒯 , and (iii) Transfer-
convolutional (TrC): Transfer convolutional [40] is one of the
most state-of-the-art transfer learning methods for domain
adaptation, which assumes that the upper layers’ representa-
tions of similar problems are transferable [30, 44]. In practice,
we freeze the convolutional layers of the trained model based
on 𝒟𝒮 and then fine-tune the fully-connected layers only
with the few-shot samples from 𝒟𝒯 . Below, we evaluate the
adaptation of BankSnoop in eight different scenarios.
Scenario 1: Different battery levels of a power bank. To
evaluate the performance of BankSnoop in different battery
levels of the power bank, we collect datasets𝒟𝑈𝐾 ,𝒟𝑄𝑊𝐸𝑅𝑇𝑌

and 𝒟𝐴𝑝𝑝 at the battery level 25%, 50%, 75%, and 100%, and
then use datasets collected at the battery level of 100% as the
𝒟𝒮 to build the base model and use the rest samples as 𝒟𝒯 .
Figure 12a presents the performance of the few-shot learning
module at the battery levels of 25%, 50%, and 75%. We can ob-
serve that the performance of app launching and keystroke
recognition under SO is the worst (lower than 25%). The
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Figure 7: Device fingerprinting results. 𝑆𝑖 × 𝑃 𝑗 :
Smartphone 𝑆𝑖 charged by the power bank 𝑃 𝑗

(𝑖, 𝑗 = 1, 2, 3, 4).

Figure 8: Battery level inference results. 𝑆𝑙1 ×
𝑃𝑙2 : Smartphone battery at 𝑙1%, power bank

battery at 𝑙2% (𝑙1, 𝑙2 = 25, 50, 75, 100).

Figure 9: App launching recognition results. 𝐴𝑛 :

the 𝑛th app of the most popular 120 mobile apps

(𝑛 = 1, 2, . . . , 120).

(a) YouTube (b) PayPal (c) WhatsApp (d) Facebook (e) Spotify
Figure 10: In-app activity recognition results.Evaluated activities of and : –Play, –Pause, –Forward, –Backward, –Next; :

–Scan QR code, –Pay bills, –Request money, –Get invoices, –Call wallet; : T–Texting, –Send images, –Send videos, –Video

call, –Voice messages; : –Thumb-up, –Comment, –Refresh, –Share, –Repost.

Figure 11: Keystroke uncovering results of the unlocking and the

QWERTY keyboards with top-10 candidates.

target-only (TO) and transfer-convolutional (TrC) methods
individually improve accuracy by approximately 35% and
45%, but their performance is lower than 80% in most of the
cases. Among all scenarios, our proposed few-shot learning
approach achieves the best performance. Specifically, it im-
proves the recognition accuracy of app launching, unlocking
and QWERTY key pressing to 75.2%, 83.7% and 82.8% in the
5-shot cases, and 81.8%, 87.5%, and 86.1% in the 10-shot cases.
The results demonstrate that BankSnoop can quickly adapt

to different battery levels of the wireless charging power bank

while maintaining a high accuracy with few samples.

Scenario 2: Different battery percentages of a smart-

phone. Previous wireless charging side-channel attacks [12,
21] show that the smartphone battery percentage can impact
the model performance. We evaluate the adaptation ability
of BankSnoop across different smartphone battery percent-
ages by using the datasets collect from the iPhone 13 Pro
charged by the EGO MAGPOWER 2 at battery percentage
80% as 𝒟𝒮 and datasets collected from 60%, 40%, and 20%
as 𝒟𝒯 . Figure 12b presents the evaluation results, where
we find the overall activity recognition accuracy decreases
to 76.4%, 75.4% and 71.4% when applying models trained

from smartphone battery percentage 80% to 60%, 40%, and
20%. Our few-shot learning module improves the accuracy to
83.3%, 82.9%, and 81.7% in the 5-shot cases, and 88.5%, 87.0%,
and 86.5% in the 10-shot cases, which also performs better
than the three baselines. The results demonstrate the practi-
cality of deploying BankSnoop to launch attacks at different

smartphone battery percentages with few-shot learning.

Scenario 3: Different wireless charging power banks.

Different wireless charging power banks may present dissim-
ilar coil whine and magnetic signal patterns of a similar task
due to the different coil parameters (e.g., coil turns, materi-
als). We evaluate BankSnoop’s domain adaptation between
different power banks by utilizing datasets of 𝑃1 as 𝒟𝒮 and
datasets collected from the other three commodity power
banks (𝑃2–𝑃4) as𝒟𝒯 . Figure 12c shows the evaluation results
of the few-shot learning module with the three power banks.
The recognition accuracy of app launching, unlocking pass-
code and the QWERTY keystroke has been enhanced from
lower than 20% (SO) to 68.9%, 79.8%, and 78.7% in the 5-shot
cases, and 79.3%, 83.7%, and 82.2% in the 10-shot cases, which
outperforms about 25% and 8% than the 𝑇𝑂 and 𝑇𝑟𝐶 meth-
ods. The results indicate that it is practical for BankSnoop to
attack different power banks and achieve promising accuracy.

Scenario 4: Different smartphonemodels.Different smart-
phones have different configurations of the secondary coil
parameters and battery volumes (e.g., iPhone 12: 2815mAh,
iPhone 13 Pro: 3095mAh), which results in different patterns
of the induced current changes by user activities. Therefore,
prior attacks on smartphones [12, 21, 24, 47] usually trained
multiple deep learning models to ensure model performance
across different smartphones. Instead, we implement the
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(a) Scenario 1: Different battery levels (power bank).
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(b) Scenario 2: Different battery percentages (smartphone).
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(c) Scenario 3: Different power banks.
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(d) Scenario 4: Different smartphones.
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(e) Scenario 5: Different users.
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(f) Scenario 6: Different screen brightness.
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(g) Scenario 7: Different wallpapers.
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(h) Scenario 8: Different table materials.

Figure 12: Few-shot learning module evaluation results (5-shot and 10-shot) in different scenarios. UK: unlocking keyboard keystroke accuracy.

QK: QWERTY keyboard keystroke accuracy. AL: app launching recognition accuracy. -K: with K-shot learning, e.g., UK-5 means 5-shot accuracy

of unlocking keystroke recognition. – SO, – TO, – TrC, – Our method.

proposed few-shot learning method by selecting samples col-
lected from 𝑆1 as the 𝒟𝒮 and other datasets collected from
another three smartphones (𝑆2–𝑆4) as 𝒟𝒯 (charging by EGO
MAGPOWER 2). Figure 12d shows the results of adaptation
from iPhone 13 Pro (𝑆1) to other two iPhone models (𝑆2, 𝑆3),
and our few-shot learning method improves the recognition
accuracy of app launching, and keystrokes of two keyboards
to 78.0%, 86.6%, and 83.5% in the 5-shot cases, and 86.4%,
92.2%, and 89.4% in the 10-shot cases. In particular, the accu-
racy decreases drastically when we directly apply the model
(SO) trained for iPhone 13 Pro (𝑆1) to a Samsung S10 (𝑆4),
which has totally different layouts of soft keyboards. Nev-
ertheless, our method also achieves an accuracy of 72.5% in
app launching recognition, 90.2%, and 71.88% in unlocking
and QWERTY keyboards’ keystrokes recognition. The re-
sults demonstrate that BankSnoop achieves fast adaptation
to smartphones of different platforms (iOS and Android).
Scenario 5: Different users. Since smartphone users may
have distinctive typing patterns (e.g., speed and movement),
we recruit a total of four volunteers (note as𝑈1,𝑈2,𝑈3, and
𝑈4) to join this study (IRB approved) and collect data for
evaluation (iPhone 13 Pro charging with EGO MAGPOWER
2) to investigate the impact of different users. Then, we use
the dataset 𝑈1 as the 𝒟𝒮 and other three datasets (𝑈2, 𝑈3,

and 𝑈4) as 𝒟𝒯 . Figure 12e shows the results of cross-user
evaluations with different approaches. We find the overall
activity recognition accuracy decreases to 79.7%, 81.6%, and
76.6% when applying the trained models of 𝑈 1 to 𝑈 2, 𝑈 3,
and 𝑈 4. The few-shot learning approach improves the accu-
racy of app launching, unlocking, and QWERTY keystrokes
recognition to 83.3%, 91.0%, and 88.9% in the 5-shot cases,
and 89.0%, 92.2%, and 90.3% in the 10-shot cases. The results
show that the few-shot learning method improves the models’

domain adaptation performance in cross-user evaluations.

Scenario 6: Different screen brightness. Recent studies
have revealed that the brightness of the touchscreen dom-
inates most of the battery consumption [9, 13]. Hence, the
brightness might impact the performance of recognizing
user activities, especially when the screen brightness varies
greatly (e.g., 75% → 25%). We collected data from four dif-
ferent brightness (25%, 50%, 75% and 100%) when an iPhone
13 Pro is charging by the EGO MAGPOWER 2. Then we
set the dataset of brightness 75% as the 𝒟𝒮 and other three
brightness datasets as the 𝒟𝒯 . Figure 12f presents the evalu-
ations of few-shot learning performance in different screen
brightness. The accuracy of app launching, unlocking, and
QWERTY keystrokes recognition can be enhanced to 83.8%,
84.0%, and 82.5% in the 5-shot cases, and 86.9%, 87.5%, and
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85.8% in the 10-shot cases. The results show that BankSnoop
can quickly adapt to varying brightness conditions.

Scenario 7: Different wallpapers. Commodity mobile de-
vices’ screens are typically buttons with blurred backgrounds.
The background picture (a.k.a. wallpaper) is displayed by
numerous RGB pixels on the OLED touch screen that can
exhibit different colors, which induce different power con-
sumption. We consider reducing the wallpapers’ impact on
BankSnoop while using fewer data samples and we also ex-
plore not only static but also dynamic wallpapers. In practice,
we use the data collected from pure white wallpapers as 𝒟𝒮
and other datasets collected from pure black, multi-colored,
and dynamic wallpapers as 𝒟𝒯 (𝑃1 × 𝑆1). Figure 12g shows
the results of adapting the trained model of static white wall-
papers to static black and multi-colored wallpapers, where
the recognition accuracy rates are 81.6%, 82.8%, and 81.3%
in the 5-shot cases, and 86.7%, 88.0%, 86.9% in the 10-shot
cases. Regarding the dynamic wallpaper cases, the dynamic
animation adds extra noise to the power consumption of the
touchscreen, which results in the worst adaptation perfor-
mance (SO lower than 30%). In addition, our method still
achieves an average 77.7% accuracy in the dynamic wallpa-
per cases, which makes BankSnoop adaptive to the vary of

different wallpapers, which can realize higher performance

with better screen-noise cancellation methods or more shots.

Scenario 8: Different table surfaces. In our experiment set-
tings, the properties of the table surface (e.g., thickness, ma-
terials) may impact the performance of BankSnoop. Hence,
we collect data by placing devices (𝑃1 × 𝑆1) on three other
table surfaces for evaluation: 0.31in (0.8cm) glass, 1.38in
(3.5cm) marble, and 0.43in (1.1cm) plastic. Similarly, we use
data collected from the oak table as 𝒟𝒮 and evaluate the
adaptation performance on datasets of other table surfaces
(𝒟𝒯 ). Figure 12h shows the evaluation results in three dif-
ferent table surfaces. Activity recognition accuracy, such as
unlocking key-press decreases around 25% due to the atten-
uation of the inductive electromagnetic field. By utilizing
few-shot learning, the accuracy of the aforementioned three
activities reaches 81.5%, 87.3%, and 86.0% in 5-shot cases, and
87.0%, 92.5%, 90.8% in 10-shot cases. The results show that
table surface matters in such a contactless attack, whereas the

proposed few-shot learning method still performs well.

6 DISCUSSION

6.1 Analysis of Other Impact Factors

Impact of environmental noise. To investigate the impact
of environmental noise, we further collect samples (iPhone
13 Pro charged by EGOMAGPOWER 2) with high-frequency
environmental noise (e.g., Gaussianwhite noise [47]) at differ-
ent signal-to-ratio (SNR) levels. Figure 13 presents the results
of coil whine detection and device fingerprinting under noise

SNR ranging from 10−6 to 50, where we find BankSnoop’s
performance decreases as we enhance the strength of the
environmental noise. In particular, when the strength of the
environmental noise is over 104× of the coil whine (SNR
= 10−4), the performance of BankSnoop degraded drasti-
cally (i.e., device fingerprinting accuracy < 40%) as such
high-frequency noise dominates the captured signals.
Impact of position and distance. In practice, an attacker
can place the disguised attacking device near the victim’s
charging smartphone at different distances. To understand
the impact of the position and distance, we conducted ex-
periments by placing the attacking device near the targeted
charging devices at different distances. Figure 14 presents
the evaluations at a distance ranging from 0.98in (2.5cm) to
7.88in (20cm). Although BankSnoop achieves similar promis-
ing accuracy in different positions (underneath the table or
near the smartphone), the overall performance decreases as
the changes in the magnetic field can be difficult to monitor
when the distance increases. In particular, when the distance
is 20cm, BankSnoop’s performance decreases to lower than
20% insufficient strength of the magnetic field disturbance,
which remains undetectable by the attacking device.

6.2 Countermeasures

C1: Shielding magnetic field. One countermeasure to de-
fend against attacks from BankSnoop is to prevent the mag-
netic traces from being eavesdropped. For example, man-
ufacturers could add thicker cases to commodity wireless
charging power bank products to shield the magnetic field
to an undetectable degree [28]. Hence, the attacker needs
to put the attacking device much closer to the victim or
use more sensitive sensors to capture the magnetic traces,
which inevitably increases the difficulties and costs of using
BankSnoop to launch side-channel attacks.
C2: Signal obfuscation. Another countermeasure is to ap-
ply signal obfuscation mechanisms in the charging coils
to generate indistinguishable current patterns so that the
attacker cannot use the collected magnetic traces for user
privacy inference. In practice, one can add random current
noises (e.g., Gaussian white noises [47]) to the primary coil
or utilize a different charging protocol that dynamically
switches the frequency and amplitude of the coil current [49]
to obfuscate the captured signals. In addition, placing other
charging devices in the vicinity can create extra magnetic
fields and obfuscate the captured magnetic field disturbances.
Implementation.We implement 𝐶1 by wrapping a 0.5 cm
thick insulation shield [37] to the power bank and implement
𝐶2 by leveraging the RIGOL DS 1052E signal generator [39]
and then measure the unlocking key-press accuracy as well
as the charging efficiency (start from 10%). Figure 14a and
Figure 14b show the result, where we know even 𝐶1 and
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Figure 13: Impact of environmental noise at

different signal-to-noise ratios (SNR).

Figure 14: Impact of position and distance (U–

underneath, N–near).

(a) Recognition accuracy. (b) Battery after charging.

Figure 15: Results of applying 𝐶1 and 𝐶2 to

BankSnoop.

𝐶2 could defend against BankSnoop, they also impact the
charging efficiency. That is, C1 also increases the distance of
the charging coils and C2 results in fluctuated coil currents,
which both reduce the power transmission efficiency.

6.3 Limitations and Future Works

We have implemented BankSnoop to demonstrate the fea-
sibility of the reported contactless side channel. While the
results are promising, there still exist several limitations in
the current work. First, BankSnoop is evaluated by attaching
the attacking device underneath the table or putting it next
to the target power bank for the proof of concept. Our work
has not evaluated its performance in other possible scenarios,
such as users holding the charging devices in their hands and
performing activities on the run. Theoretically, BankSnoop
is feasible to apply to those scenarios by adjusting the po-
sition and distance of the attacking device within a certain
range to capture traces, whereas it inevitably increases the
difficulty of launching attacks. Second, we consider a close
and practical attacking distance in BankSnoop to demon-
strate the feasibility because the two physical phenomena
will attenuate as the distance increase, which requires tun-
ing the models to adapt to a longer distance. We push these
analyses to our future works.

7 RELATEDWORKS

Wireless charging attacks. Qi protocol has become the
de-facto wireless charging standard for mobile devices [42].
Nevertheless, recent researches reveal security vulnerabili-
ties of Qi-certified wireless charging systems. Cour et al. [21]
presented a website fingerprinting attack on wireless charg-
ers from its current traces in the power line, which requires a
stable charging voltage and a high battery level of the smart-
phone (e.g., > 80%). Wu et al. [47] used a hidden coil to obtain
induced current for hijacking the battery and identifying app
activities. Moreover, EM-Surfing [24] utilized the induced
voltage of an external resistor to monitor privacy leakages,
e.g., app usage and keystrokes. BankSnoop addresses the
limitations in these prior works to launch contactless and
end-to-end side-channel attacks that achieve fine-grained
user privacy inference and realize fast adaptation.

Magnetic side-channel attacks. Recent years have wit-
nessed the development of studies relevant to magnetic-
based side-channel attacks. For instance, MagEar [23] utilizes
the magnetic flux from the victim’s earphone speaker to per-
form audio eavesdropping attacks. MagSnoop [11] injects
malware to capture the sounds in a magnetic secure transmis-
sion (MST) process (e.g., Samsung Pay) to recover the tokens
of a credit card. In addition, electromagnetic (EM) emana-
tion can be exploited to extract secret keys [16], reconstruct
model architectures [5, 29], uncover screen messages [25]
and keystrokes [19, 43]. Likewise, BankSnoop has demon-
strated the feasibility of exploiting two magnetic-induced
phenomena to attack wireless charging power banks.

8 CONCLUSION

In this paper, we report a new side channel in wireless charg-
ing power banks that can be exploited to launch contact-
less attacks to infer sensitive information from the charging
smartphone, which leverages the coil whine and the mag-
netic field disturbance stemming from the wireless charging
process. We have designed and implemented BankSnoop, an
attack framework to demonstrate the feasibility of this new
side-channel attack. To the best of our knowledge, it is the
first attack on wireless charging power banks. Our extensive
evaluation suggests that BankSnoop is effective in recog-
nizing app launching/in-app activities and uncovering user
keystrokes, and the few-shot learning module enables it to
adapt to different scenarios whilemaintaining high accuracy.
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